Math 53 Discussion Problems Dec 3

1. Calculate $\iint_{S} f d S$ for the given surface S and function f.
(a) S the parabolic cylinder $y=x^{2}, 0 \leq x \leq 2,0 \leq z \leq 3$, $f(x, y, z)=x$
(b) $S=$ triangular surface with vertices $(1,0,0),(0,2,0),(0,1,1), f(x, y, z)=$ $x y z$
(c) $S=$ boundary of the wedge in the first octant bounded by the coordinate planes and the planes $x=2$ and $y+z=1, f(x, y, z)=$ $y+z$
2. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for the given oriented surface S and vector field F.
(a) $S=$ portion of the sphere $x^{2}+y^{2}+z^{2}=4$, \mathbf{n} points away from the origin, $F(x, y, z)=z \mathbf{k}$
(b) $S=$ the cone $z=2 \sqrt{x^{2}+y^{2}}, 0 \leq z \leq 2$, n points away from the z-axis, $F(x, y, z)=y^{2} \mathbf{i}+x z \mathbf{j}-\mathbf{k}$
(c) $S=$ portion of the cylinder $x^{2}+y^{2}=1$ cut by the planes $z=$ $0, z=1, \mathbf{n}$ points outwards, $F(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
