Math 53 Discussion Problems Dec 3

- 1. Calculate $\iint_S f dS$ for the given surface S and function f.
 - (a) S = the parabolic cylinder y = $x^2, 0 \leq x \leq 2, 0 \leq z \leq 3,$ f(x,y,z) = x
 - (b) S = triangular surface with vertices (1, 0, 0), (0, 2, 0), (0, 1, 1), f(x, y, z) = xyz
 - (c) S = boundary of the wedge in the first octant bounded by the coordinate planes and the planes x = 2 and y + z = 1, f(x, y, z) = y + z
- 2. Calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given oriented surface S and vector field F.
 - (a) $S = \text{portion of the sphere } x^2 + y^2 + z^2 = 4$, **n** points away from the origin, $F(x, y, z) = z\mathbf{k}$
 - (b) S = the cone $z = 2\sqrt{x^2 + y^2}, 0 \le z \le 2$, **n** points away from the z-axis, $F(x, y, z) = y^2 \mathbf{i} + xz \mathbf{j} \mathbf{k}$
 - (c) $S = \text{portion of the cylinder } x^2 + y^2 = 1 \text{ cut by the planes } z = 0, z = 1, \mathbf{n} \text{ points outwards}, F(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$